FENTONETRIX®

Rapid Non-destructive Characterization of Trap Densities and Layer Thicknesses in HfO₂ Gate Materials Using Optical Second Harmonic Generation

Prepared For: Semicon Korea

January 2016

1850 East St. Andrew Place Santa Ana, California 92705

email: info@femtometrix.com www.femtometrix.com

Assuring Quality Interfaces

Semiconductor Quality Assurance Tool Provider

Company Headquarters

FemtoMetrix, Inc.

- Founded 2011
- Headquarters in California, USA
- Demo site at LETI
- Korean Distributor: Ahtech LTS

Technology Overview

Harmonic FIx[®]: Second Harmonic Generation (SHG)

SHG Technique

- The second harmonic signal is sensitive to electric fields at interfaces of materials.
- SHG is forbidden in materials with inversion symmetry (this includes Si + SiO₂).
- At interfaces symmetry is broken + SHG is allowed.
- This makes SHG highly interface/surface specific.

SHG Capabilities

Key Benefits to Device Fabs:

- Non-destructive optical subsurface analysis
- High in-line throughput (20-30 WPH+)
- Enhanced defect + contaminant detection
- Enables Go/NoGo in-line: inspection survey

Tool Results Correlate To:

- Metal Contamination at Interfaces
- Trapped Charges
- Interface Roughness
- Layer Thickness
- Doping
- Structural Defects
- Strain

Production Tool

Harmonic Flx[®]

- Sensitive surface and subsurface analysis
- Layer thickness measurements
- SMIF or FOUP loading configurable
- High in-line throughput (20-30+WPH)
- Minimal facilities requirement only power, vacuum, ESD + seismic
- ISO Class I cleanroom mini-environment
- Bay + Chase / Ballroom compatible
- 200mm or 300mm configurable

"...(SHG is) needed, techniques that allow to characterize and monitor various aspects of the epitaxial structures without damaging the wafers in processing, and to evaluate how these aspects evolve during subsequent processing."

-Dr. Matty Caymax Chief Scientist, Imec

Applications Overview

Material	Information	Comments
Bulk Si / TSV	Dielectric traps, interfacial roughness, contamination @ interface, minority carrier lifetime, Dit, stress/strain, doping	Can assist AFM, TXRF, VPD-ICPMS, SIMS, TEM, IPE + others
High-K / HfO ₂	O2 Vacancy, Layer thicknesses, Barrier Energy @ Heterointerface	Can assist XPS, CV/IV, Ellipsometry + others
FD-SOI	Bulk + buried interfaces / BOX	All values for bulk + optical pseudo- MOS + buried interfaces
SiGe	Stress/strain, dopant concentrations	Can assist AFM,VPD-ICPMS, SIMS, Haze + others
III-V (GaAs)	Anti-phase boundaries, lattice defects	Can assist TEM

Why High-K Dielectrics?

High-K Dielectric Issues

Typical High-K dielectrics are

- HfO₂ as gate dielectric in CPUs
- ZrO₂ as capacitor dielectric in DRAMs
- Al₂O₃ as the blocking oxide in charge traps memories

Introducing High-K materials into fab processes leads to many reliability challenges due to structural defects

- Asymmetric gate band structure induce polarity effects
- Threshold voltage instability
- Challenge to achieve lifetime equal or better than SiO₂ transistors
- Hysteresis phenomena

Finding innovative ways to characterize and model these defects will help develop high quality advanced commercial product that are highly reliable

Technique Comparisons

<u>Tool => Uses</u>	CV/IV	ХР
In-line		
Non- Destructive		
Chemical Analysis		
Electrical Properties		
Structural Properties		
No Sample Preparation		

Prior SHG / HfO₂ Work

- TD-SHG signature depends on many factors
 - Laser power, photon incident energy, SiO₂ and HfO₂ thicknesses and post-deposition anneal (PDA) and alloying HfO₂ with silicate

Our experimental observations are in line with prior work We do not see decay due to SiO₂ thickness (~2nm)

 $\mathbf{08}$

After Price et al. Appl. Phys. Lett. 95, 052906 2009

HfO₂ Sample Creation

 Eight (8) 100mm Si wafers Orientation: <1-0-0> 	Sample Number	AL Cyc
 Resistivity: I-5 ohm-cm 	6	
• Variables:	7	
 HtO₂ Thickness H₂O Vapor Pulse 	8	
 Annealing 	9	
 H₂O Vapor Pulse affects O-vacancy ratio 	10	
• Anneal: 30min @ 1000°C in Na ambient	11	
	12	
 Thickness measured by Ellipsometry 	13	

D es	Water Vapor Pulse	PDA	HfO2 Film Thickness (Å)
10	0.015	As deposited	22.31
25	0.015	As deposited	34.66
40	0.015	As deposited	45.37
25	0.060	As deposited	33.22
10	0.015	Annealed	52.13
25	0.015	Annealed	58.11
40	0.015	Annealed	70.66
25	0.060	Annealed	57.53

CV Measurements

- Capacitance-Voltage (CV) measurements taken of all wafers
 - Hg probe as contact on wafer front side
- Measurement conditions
 - Measured from front-to-back of wafer
 - 926um Hg probe on wafer center 100kHz frequency
 - -1.0 to 1.0 V range

$V_{FB} \alpha Dd$ (Defect densities)

Goal was to detect variations in V_{FB} voltage in the CV characteristics which is an indication of variation in defect densities for a fixed thickness

CV Results: As Deposited

 $V_{FB}(7) < V_{FB}(9) =>$ variation in defect densities $V_{FB}(6) < V_{FB}(8) =>$ variation in defect densities S7 and S9 have equal HfO2 thicknesses

In first order, we see differences in CV responses between samples VFB variation is an indication of defect density variation

11

S6 and S8 have different HfO2 thicknesses

CV Results: Annealed

V_{FB} (13) < V_{FB} (11) => variation in Dd S11 and S13 have equal HfO2 thicknesses

In first order, we see differences in CV responses between samples VFB variation is an indication of defect densities variation

 V_{FB} (10) < V_{FB} (12) => variation in Dd S10 and S12 have different HfO2 thicknesses

XPS Calibration

X-Ray Photoelectron Spectroscopy (XPS)

Instrument	PHI Qu
X-ray source	Monoc
Acceptance Angle	±23°
Take-off angle	45°
Analysis area	1400μr
Charge Correction	C1s 28

- Measure elemental composition of top ~5-10nm
- Sensitivity: 1.0 to 0.05 atomic %

Goal is to determine the composition and chemistry of wafer samples and compare the O-content within the HfO_x films.

13

antum 2000

hromated Alk_{α} 1486.6eV

n x 300µm

4.8 eV

on of top ~5-10nm %

XPS Results A

Results: Un-annealed Wafers (S7, S9)

14

(S7) 2.8% oxygen sites in HfO_2 are vacant (S9) 1.0% oxygen sites in HfO_2 are vacant

XPS Results B

Results: Annealed Wafers(S11, S13)

15

Both samples have hafnium-oxygen ratios in excess of stoichiometric – (0.5, or 1 Hf per 20)

SHG Tool Configuration

PARAMETER

Laser Average Power

Laser Photon Energy

Incident Beam Polarization

Output Collection Polarization

SHG Photon Energy

Incident Angle

SETTING
300 mW
I.5895 eV
Ρ
Ρ
3.179 eV
45°

TD-SHG Results A

Results: Un-annealed Wafers (S7, S9)

Longer H2O pulse results in higher initial and overall signal Un-annealed samples show strong time dependence

TD-SHG Results B

18

HfO₂ Thicknesses ~ 10 Å (*S*6) ~ 25 Å (S7) ~ 40 Å (S8)

Trap Quantification: HfO₂

Modeling Tool

Model is needed to understand experimental data from SHG measurements

19

interfaces, with E-field induced secondharmonic signal from a Si/SiO₂ interface Applicable to HfO₂/SiO₂ systems

Applied Tau Model

Layer Thickness Correlation

Results Summary

- Eight Si/SiO₂/HfO₂ wafers were created for characterization of the gate stacks
- Ellipsometry, CV, XPS + SHG data were taken on the center point of each wafer
- SHG has been correlated with ellipsometry + results are consistent with prior work
- SHG observes differences in trap density confirmed by XPS + CV characterizations
- Layer thickness + trap densities have been parsed from the raw SHG signal
- Next steps are derivation of quantified values: layer thickness, O-vacancy densities

Questions?

